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We study representation of square-free polynomials in the
polynomial ring Fq[t] over a finite field Fq by polynomials
in Fq[t][x]. This is a function field version of the well-
studied problem of representing square-free integers by
integer polynomials, where it is conjectured that a separable
polynomial f ∈ Z[x] takes infinitely many square-free values,
barring some simple exceptional cases, in fact that the integers
a for which f(a) is square-free have a positive density. We
show that if f(x) ∈ Fq[t][x] is separable, with square-free
content, of bounded degree and height, and n is fixed, then
as q → ∞, for almost all monic polynomials a(t) of degree n,
the polynomial f(a) is square-free.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Fq be a finite field of q elements. We wish to study representation of square-free
polynomials in the polynomial ring Fq[t] by polynomials in Fq[t][x]. This is a function
field version of the well-studied problem of representing square-free integers by inte-
ger polynomials, where it is conjectured that a separable polynomial (that is, without
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repeated roots) f ∈ Z[x] takes infinitely many square-free values, barring some simple
exceptional cases, in fact that the integers a for which f(a) is square-free have a pos-
itive density. The problem is most difficult when f is irreducible. The quadratic case
was solved by Ricci [13]. For cubics, Erdös [2] showed that there are infinitely many
square-free values, and Hooley [6] gave the result about positive density. Beyond that
nothing seems known unconditionally for irreducible f , for instance it is still not known
that a4 + 2 is infinitely often square-free. Granville [3] showed that the ABC conjecture
completely settles this problem. An easier problem which has recently been solved is to
ask how often an irreducible polynomial f ∈ Z[x] of degree d attains values which are free
of (d− 1)-th powers, either when evaluated at integers or at primes, see [2,7–9,5,1,4,12].

In this note we study a function field version of this problem. Given a polynomial
f(x) =

∑
j γj(t)xj ∈ Fq[t][x] which is separable, that is with no repeated roots in any

extension of Fq(t), we want to know how often is f(a) square-free in Fq[t] as a runs over
(monic) polynomials in Fq[t].

We want to rule out polynomials like f(x, t) = t2x for which f(a(t), t) can never
be square-free. To do so, recall that the content c ∈ Fq[t] of a polynomial f ∈
Fq[t][x] as above is defined as the greatest common divisor of the coefficients of f :
c = gcd(γ0, . . . , γ�). A polynomial is primitive if c = 1, and any f ∈ Fq[t][x] can be
written as f = cf0 where f0 is primitive. If the content c is not square-free then f(a)
can never be square-free.

For any field F, let

Mn(F) =
{
a ∈ F[t]: deg a = n, a monic

}
, (1.1)

so that #Mn(Fq) = qn. Defining

Sf (n)(F) =
{
a ∈ Mn(F): f(a) is square-free

}
, (1.2)

we want to study the frequency

#Sf (n)(Fq)
#Mn(Fq)

(1.3)

in an appropriate limit.
There are two possible limits to take: Large degree (n → ∞) while keeping the constant

field Fq fixed, or large constant field (q → ∞) while keeping n fixed. The large degree
limit (q fixed, n → ∞) was investigated by Ramsay [11] and Poonen [10] who showed1

that for f ∈ Fq[t][x] separable,

#Sf (n)(Fq)
#Mn(Fq)

= cf + Of,q

(
1
n

)
, as n → ∞, (1.4)

1 They actually count all polynomials up to degree n, and do not impose the monic condition.
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with

cf =
∏
P

(
1 − ρf (P 2)

|P |2
)
, (1.5)

the product over prime polynomials P , and for any polynomial D ∈ Fq[t], ρf (D) =
#{C mod D: f(C) = 0 mod D}. The implied constant depends on f and on the finite
field size q. The density cf is positive if and only if there is some a ∈ Fq[t] such that f(a)
is square-free.

In this note we deal with the large finite field limit, of q → ∞ while n is fixed. Here it
makes little sense to fix the polynomial f , so we also allow variable f , as long as restrict
the degree (in x) and height, where for a polynomial f(x, t) =

∑
j γj(t)xj ∈ F[t][x], the

height is Ht(f) = maxj deg γj(t).
We will show

Theorem 1.1. For all separable f ∈ Fq[t][x] with square-free content, as q → ∞,

#Sf (n)(Fq)
#Mn(Fq)

= 1 + O

(
(n deg f + Ht(f)) deg f

q

)
, (1.6)

the implied constant absolute.

Thus if we fix n, the degree and the height, as q → ∞ for almost all a ∈ Mn(Fq) the
polynomials f(a) are square-free. For instance, the number of a(t) ∈ Mn(Fq) for which
a(t)4 + 2 is square-free is, for q odd, qn + O(nqn−1).

Note that since primes (irreducibles) have positive density among all monic polyno-
mials of given degree in Fq[t], we in particular find that for almost all primes P ∈ Fq[t]
of given degree, the polynomial f(P ) is square-free as q → ∞.

Remark. It is possible to have primitive, separable f with no square-free values, for
instance take

f(x) =
∏

α,β∈Fq

(x− αt− β) = xq2
+ · · · . (1.7)

Then for all a ∈ Fq[t], f(a) is divisible by (
∏

γ∈Fq
(t − γ))2 = (tq − t)2. Indeed, if we

fix γ ∈ Fq, any a ∈ Fq[t] is congruent modulo (t − γ)2 to some αt + β and hence
f(a) ≡ f(αt + β) = 0 mod (t − γ)2. Thus we need to impose some restriction on the
degree of f in Theorem 1.1.

Theorem 1.1 is a consequence of a purely algebraic result, valid over any field F.

Theorem 1.2. Suppose f ∈ F[t][x] is separable over F(t) and has square-free content.
Then Sf (n) is the complement of a proper Zariski-closed hypersurface of the affine
n-dimensional space Mn, of degree D � 2(n deg f + Ht f) deg f .
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Theorem 1.2 implies that the number of a ∈ Mn(Fq) for which f(a) is not square-free
is at most Dqn−1, where D is the total degree of an equation defining the hypersurface.
Indeed, if h ∈ Fq[X1, . . . , Xm] is a non-zero polynomial of total degree at most D, then
the number of zeros of h(X1, . . . , Xm) in F

m
q is at most Dqm−1. This is an elementary

fact, seen by fixing all variables but one (cf. [14, §4, Lemma 3.1]). Hence Theorem 1.1
follows.

2. Proof of Theorem 1.2

2.1. The primitive case

We write

f(x, t) = γ0(t) + γ1(t)x + · · · + γ�(t)x� (2.1)

with γj(t) ∈ F[t], and γ�(t) �= 0. We first assume that f(x, t) is primitive, that is
gcd(γj(t)) = 1. Denote by

Δf (t) = discx f(x, t) (2.2)

the discriminant of f(x) as a polynomial of degree � with coefficients in F[t]; it is a
universal polynomial with integer coefficients in γ0(t), . . . , γ�(t):

Δf (t) = Poly
Z

(
γ0(t), . . . , γ�(t)

)
∈ F[t]. (2.3)

Separability of f (over F(t)) is equivalent to the discriminant not being the zero polyno-
mial: Δf (t) �= 0.

The key observation is that f(a) ∈ F[t] being square-free is equivalent to requiring
that the polynomial t �→ f(a(t), t) does not have any multiple zeros (in any extension
of the field F). This is in fact a polynomial condition, that is a polynomial system of
equations for the coefficients a0, a1, . . . , an−1 of a(t) = a0 + a1t + · · · + an−1t

n−1 + tn

which is given by the vanishing of the discriminant:

disc f
(
a(t), t

)
= 0. (2.4)

It suffices to show that this equation defines a proper hypersurface.
Before doing so, we bound the degree D of the hypersurface (2.4): For f(x, t) as in

(2.1), f(a(t), t) is a polynomial in t of degree

deg f
(
a(t), t

)
� n deg f + max deg γj = n deg f + Ht(f). (2.5)

The coefficients are polynomials in the aj of degree at most deg f . Now the discriminant
of a polynomial

∑m
j=0 hjt

j is homogeneous in the coefficients hj of degree 2m−2. Hence
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a �→ disc f(a(t), t) =
∑

k δk
∏

aki
i has total degree at most

D � 2
(
n deg f + Ht(f)

)
deg f. (2.6)

It remains to show that Eq. (2.4) is nontrivial.
The condition that the polynomial f(a(t)) has multiple zeros is that there is some

ρ ∈ F (an algebraic closure of F) with

f
(
a(ρ), ρ

)
= 0, ∂f

∂x

(
a(ρ), ρ

)
· a′(ρ) + ∂f

∂t

(
a(ρ), ρ

)
= 0. (2.7)

We define

W =
{
(ρ,	a) ∈ A

1 × A
n: (2.7) holds

}
. (2.8)

We have a fibration of W over the ρ line A
1 and a map φ : W → A

n, the restriction of
the projection A

1 × A
n → A

n,

W ⊂ A
1 × A

n

π φ

A
1

A
n

(2.9)

and the solutions of (2.7) are precisely φ(W ).
We will show that generically the fiber π−1(ρ) has dimension n − 2 and for at most

finitely many ρ the dimension is n− 1. Therefore we obtain that dimW = n− 1. Since
the solutions of (2.7) are precisely φ(W ), it follows that dimφ(W ) � n − 1. This will
conclude the proof of Theorem 1.2 in the primitive case.

We note that for primitive polynomials, f(x, ρ) =
∑

j γj(ρ)xj is not the zero polyno-
mial for any ρ ∈ F. Thus for each ρ ∈ F, the condition f(a(ρ), ρ) = 0 constrains a to
solve an equation a(ρ) = β, where β ∈ F is one of the at most deg f roots of f(x, ρ).

We separate into two cases: The singular case when ∂f
∂x (a(ρ), ρ) = 0 and the generic

case when we require ∂f
∂x (a(ρ), ρ) �= 0.

The singular case implies that β is a multiple zero of the polynomial f(x, ρ), that is
that ρ is a zero of the discriminant Δf (t), which is not identically zero (since we assume
f is separable) and hence there are only finitely many possibilities for such ρ. Given one
of those ρ, then we need a(t) to satisfy a(ρ) = β, i.e.

a0 + a1ρ + · · · + an−1ρ
n−1 + ρn = β (2.10)

which is a (non-degenerate) linear equation, and therefore carves out an (n − 1)-di-
mensional subspace of a’s. Thus the singular locus consists of at most finitely many
hyperplanes, and hence if non-empty has dimension n− 1.
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In the generic case, we substitute a(ρ) = β into (2.7) to get a system

a(ρ) = β, a′(ρ) = −
∂f
∂t (β, ρ)
∂f
∂x (β, ρ)

(2.11)

that is

a0 + a1ρ + a2ρ
2 + · · · + an−1ρ

n−1 = −ρn + β,

a1 + a2 · 2ρ + · · · + an−1 · (n− 1)ρn−2 = −nρn−1 −
∂f
∂t (β, ρ)
∂f
∂x (β, ρ)

(2.12)

which is clearly of rank 2. Hence the fibers π−1(ρ) have dimension n− 2.

2.2. The general case

We now relax the primitivity condition. Write f(x, t) = c(t)f0(x, t) where f0(x, t) =∑
j γ

(0)
j (t)xj is primitive, and c(t) ∈ Fq[t] is square-free. Since c(t) is square-free, we

obtain that f(a(t), t) is square-free if and only if f0(a(t), t) is square-free and coprime to
c(t). Now f0(a(t), t) being square-free is the condition disc f0(a(t), t) �= 0. For f0(a) to
not be coprime to c is the algebraic condition on vanishing of the resultant

R = Res
(
c(t), f0

(
a(t), t

))
. (2.13)

Thus the set of a ∈ Mn so that f(a) is square-free is the complement of the hypersurface

disc f0
(
a(t), t

)
·R(t) = 0. (2.14)

We wish to show that this is a non-zero equation and to bound its total degree.
We have established above that the discriminant equation disc f0(a(t), t) = 0 is non-

trivial, of total degree

D0 � 2
(
n deg f0 + Ht(f0)

)
deg f0 = 2

(
n deg f + Ht(f0)

)
deg f (2.15)

in a0, . . . , an.
We wish to show that the resultant R is not identically zero. Assuming (as we may)

that c(t) is monic, we can write the resultant as a product over the zeros of c(t)

R =
∏

c(α)=0

f0
(
a(α), α

)
=

∏
c(α)=0

�∑
j=0

γ
(0)
j (α)

(
a0 + · · · + αn

)j
. (2.16)

For each zero α of c(t), let �(α) = deg f0(x, α) be the degree of the polynomial f0(x, α) ∈
Fq[x], which is not the zero polynomial by primitivity of f0. Then the total degree of R
is
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L :=
∑

c(α)=0

�(α) � deg c · deg f (2.17)

and the coefficient of aL0 is
∏

α γ
(0)
�(α)(α) which is non-zero. Hence R is non-zero and of

degree L.
Finally, we compute the total degree of Eq. (2.14) is the sum of D0 and degR, which

is at most

2
(
n deg f + Ht(f0)

)
deg f + deg c · deg f � 2

(
n deg f + Ht(f)

)
deg f (2.18)

since Ht(f) = Ht(f0) + deg c. This concludes the proof of Theorem 1.2.
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